Q.P. Cod	e: ′	16HS611 R	16
Reg. No	0:		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year II Semester (R16) Regular Examinations May/June 2017 ENGINEERING MATHEMATICS-II (Common to All Branches) (For Students admitted in 2016 only)			
Time: 3 h	our	Max. Mark (Answer all Five Units 5 X 12 = 60 Marks)	ks: 60
UNIT-I			
1 a	а.	Test for consistency and solve $2x-3y+7z=5$; $3x+y-3z=13$;	6M
		2x + 19y - 47z = 32.	
t	Э.	Define Rank of a matrix. Find the rank of the matrix $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ by	6M
		using Echelon form	
2		OR	
Z		Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and	12 M
		hence find A^{-1} .	
		UNIT-II	
3 8	а	Find <i>divF</i> and <i>curlF</i> , where $F = grad(x^3 + y^3 + z^3 - 3xyz)$	8 M
I	b	Find a unit normal vector to the given surface $x^2y + 2xz = 4$ at the point $(2, -2, 3)$	4M
		OR	
4		Verify Greens theorem for $\int_C ((xy + y^2)dx + x^2dy)$, where <i>C</i> is bounded by	12M
		$y = x$ and $y = x^2$.	12101
5 á	а.	Expand the function $f(x) = x \sin x$ as a Fourier series in the interval $[0, 2\pi]$	8M
t	0.	Expand the function $f(x) = x^2$ in the interval $[-\pi, \pi]$ OR	4M

Q.P. Code: 16HS611

a. Find half-range cosine series for
$$f(x) = (x-1)^2$$
 in $0 < x < 1$. 6M

Find half-range sine series for f(x) = x in 0 < x < 2. b. 6M

UNIT-IV Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$. Hence evaluate

12M $\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx$

OR

8

7

6

Find the Fourier sine and cosine transforms of
$$f(x) = e^{-ax}$$
, $a > 0$ and

deduce the integrals
$$\int_{0}^{\infty} \frac{\cos px}{a^2 + p^2} dp$$
 and $\int_{0}^{\infty} \frac{p \sin px}{a^2 + p^2} dp$ 12M

UNIT-V

9 Solve by the method of separation of variables $u_x = 2u_t + u$ where а $u(x,0) = 6e^{-3x}$ 6M

b Form the Partial Differential Equation by eliminating arbitrary function z = f(y+2x) + g(y-2x)6M

OR

10 A tightly stretched string of length *l* with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a 12M velocity $v_0 \sin^3\left(\frac{\pi x}{l}\right)$. Find the displacement y(x,t).

*** END ***